Optimised Latin Hypercube Sampling Plan

Optimised Latin Hypercube Sampling Plan

Create an optimised Latin Hypercube Sampling Plan using a genetic based optimisation algorithm. The objective function is the inverse of the Audze-Eglais function defined as

\[\text{max } U = \text{max} \sum_{p=1}^P \sum_{q=p+1}^P L^2_{pq}\]

where $L^2_{pq}$ is the square of the Euclidean norm.

Note

This package maximises the inverse of the Audze-Eglais objective function.

Function

function LHCoptim(n::Int,d::Int,gens)

Produce an optimized Latin Hyper Cube with d dimensions and n sample points. Optimization is run for gens generations.

source

Example

The LHCoptim function run for many generations to create an optimised 120 point plan in 2 dimensions.

julia> LHCoptim(120,2,gens)